
Robust Service Mapping in Multi-Tenant Clouds

Jingzhou Wang1,3 Gongming Zhao1,3 Hongli Xu1,3 He Huang2 Luyao Luo1,3 Yongqiang Yang4
1School of Computer Science and Technology, University of Science and Technology of China

2School of Computer Science and Technology, Soochow University
3Suzhou Institute for Advanced Study, University of Science and Technology of China

4Huawei Technologies Co., Ltd

Abstract—In a multi-tenant cloud, cloud vendors provide
services (e.g., elastic load-balancing, virtual private networks)
on service nodes for tenants. Thus, the mapping of tenants’
traffic and service nodes is an important issue in multi-tenant
clouds. In practice, unreliability of service nodes and uncer-
tainty/dynamics of tenants’ traffic are two critical challenges
that affect the tenants’ QoS. However, previous works often
ignore the impact of these two challenges, leading to poor system
robustness when encountering system accidents. To bridge the
gap, this paper studies the problem of robust service mapping
in multi-tenant clouds (RSMP). Due to traffic dynamics, we
take a two-step approach: service node assignment and tenant
traffic scheduling. For service node assignment, we prove its
NP-Hardness and analyze its problem difficulty. Then, we
propose an efficient algorithm with bounded approximation
factors based on randomized rounding and knapsack. For
tenant traffic scheduling, we design an approximation algorithm
based on fully polynomial time approximation scheme (FPTAS).
The proposed algorithm achieves the approximation factor of
2+ε, where ε is an arbitrarily small value. Both small-scale
experimental results and large-scale simulation results show the
superior performance of our proposed algorithms compared
with other alternatives.

Index Terms—Multi-Tenant Cloud, Service Mapping, Load
Balancing, Robustness

I. INTRODUCTION

Building IT infrastructure by enterprises/individuals incurs

many costs, ranging from hardware costs to software costs

(e.g., purchasing hardware, licensing software and managing

enterprise networks) [1]. Cloud computing has enabled a

new paradigm to host different services on data centers

maintained by professional cloud vendors [2], e.g., Amazon

Web Services [3] and Google Cloud Platform [4]. Cloud

vendors free users from cumbersome tasks (e.g., managing

and maintaining IT infrastructure) through centralized man-

agement, thus an increasing number of enterprises/individuals

are moving workloads to clouds [5] [6].

In a multi-tenant cloud, two or more tenants share the

same hardware resources, e.g., creating VMs on the same

physical machine (referred to as a computing node hereafter)

[7]. Tenants may require the support of various network

services, e.g., elastic load-balancing (ELB) [8], virtual pri-

vate networks (VPN) [9], firewall [10] and data storage

auditing service [11]. Thus, in the cloud environment, a

set of software/hardware devices has been configured for

providing various services, referred to as service nodes here-

after. According to tenants’ requirements, the cloud vendor

is responsible for scheduling tenants’ traffic to the proper

service node(s), also called service mapping [12] [13].

To solve the service mapping problem in multi-tenant

clouds, several efficient solutions have been designed in

[14] [15] [16] [17]. Existing works usually focus on the

problem of traffic scheduling with minimum makespan under

resource constraints [14] [15] or with minimum cost under

deadline constraints [16] [17]. For example, the authors [14]

consider service node processing delay and formulate the

joint problem of service mapping and traffic steering as a

mixed integer linear program with the objective of minimum

makespan. The work [16] aims to minimize the workflow

execution cost with deadline constraints.

However, it is far from trivial to achieve a robust service

mapping scheme in a multi-tenant cloud using existing meth-

ods. Specifically, there are two critical but neglected chal-

lenges for service mapping in practice. One is unreliability of
service nodes. Network device failure is a common scenario

in today’s networks. For example, the previous work [18]

has shown that load balancers experience 21% of device

failures in one year. Service node failure will cause the

service unavailable and decrease tenants’ QoS, especially

in the commercial clouds [19]. Therefore, we should try to

reduce the number of affected tenants when encountering

service node failure. The other challenge is uncertainty of
tenants’ traffic. In practice, traffic in a multi-tenant cloud is

diverse due to different purposes and expectations of various

tenants. On one hand, malicious tenants are very common in

multi-tenant clouds [20]. They may launch network attacks

[20] [21] and make the service nodes unavailable [22]. For

instance, AWS has already been attacked by spammers and

often been subject to denial of service attacks [23]. On

the other hand, the traffic may change dynamically to meet

tenants’ requirements [24]. Thus, bursty traffic is common

in clouds and may cause the mapped service node(s) over-

load [25]. For example, the new computing paradigms, e.g.,
MapReduce [26] and distributed machine learning [27], may

cause highly bursty traffic and overload the mapped service

node(s) [25]. Thus, it is necessary to control the number of

service nodes that a tenant will affect.

To our best knowledge, existing works on service mapping

often focus on resource constraints and ignore the unreliabil-

ity/uncertainty issues in the cloud environment. To conquer

the above challenges, this paper studies the problem of robust

service mapping in multi-tenant clouds (RSMP). The key idea

of RSMP is two-fold: 1) In order to reduce the impact of

service node unreliability on tenants, RSMP should ensure

that each service node can only serve a limited number of

2

tenants. In this way, we can control the number of affected

tenants when encountering service node failure. 2) In order

to relieve the impact of tenant traffic uncertainty on service

nodes, RSMP should ensure that the traffic of each tenant will

be forwarded to a limited number of service nodes. In this

way, we can control the number of affected service nodes

when a tenant generates bursty/anomaly traffic. The main

contributions of this paper are as follows:

1) We give the problem of robust service mapping in multi-

tenant clouds (RSMP). Due to traffic dynamics, we solve

this problem by taking a two-step approach: service

node assignment and tenant traffic scheduling.

2) For service node assignment, we analyze the complexity

of this problem by showing that several existing NP-hard

problems are special cases of our problem. We propose

a randomized rounding and knapsack based algorithm

for this problem, and prove the approximation factor of

O(logms), where ms is the number of service nodes.

3) For tenant traffic scheduling, we present an efficient

algorithm based on binary search and combinatorial

rounding. Moreover, we design a fully polynomial time

approximation scheme (FPTAS) to further reduce the

time complexity. We analyze that the proposed algo-

rithm can achieve (2+ε)-approximation, where ε is an

arbitrarily small value.

4) We conduct small-scale tests and large-scale simulations

using real-world topologies and datasets [28] [29] to

show that the proposed algorithms achieve superior per-

formance compared with the state-of-the-art solutions.

II. PRELIMINARIES

A. Multi-Tenant Cloud Model

A typical multi-tenant cloud consists of three components:

a computing node set, a service node set and a management

plane. Let N = {n1, n2, ...nmn
} represent the set of com-

puting nodes, where mn = |N | is the number of computing

nodes. There are several types of service nodes in a multi-

tenant cloud, e.g., ELB and VPN. E = {e1, e2, ..., eh}
denotes the service type set, where h = |E| is the number of

service types in the cloud. Let Se =
{
se1, s

e
2, ..., s

e
me

}
denote

the service node set with type e ∈ E, where me = |Se| is

the number of service nodes of type e ∈ E. Moreover, we

use set S = S1∪S2...∪Sh to denote the whole service node

set and the number of service nodes is denoted by ms. The

management plane is responsible for managing the whole

network, including service mapping decisions and system

accident management in the network.

In practice, a set of tenants rent VMs and buy services

from cloud vendors according to their needs. We use T =
{t1, t2, ...tmt

} to denote the set of tenants, where mt = |T | is

the number of tenants. Moreover, we use set Ej to denote the

set of service types purchased by tenant tj ∈ T . Meanwhile,

cloud vendors create VMs on computing nodes and provide

services on service nodes according to tenants’ requirements.

Note that, when a tenant sends a command to create a VM,

the cloud management plane selects a computing node to start

a VM based on the current load of the computing nodes, thus

the VM’s location is uncertain and a large-scale tenant may

have VMs on thousands of computing nodes [30].

B. Problem Statement

In this section, we give the problem statement of robust

service mapping in multi-tenant clouds (RSMP). In multi-

tenant clouds, considering that different tenants may generate

traffic with various service requirements on different comput-

ing nodes, we usually schedule traffic at the granularity of

the combination of tenants, computing nodes and required

services. In other words, we identify a request by three

elements (tenant, computing node and service type). For each

request, we need to forward it to a proper service node, also

called service mapping.

To enhance the system robustness and improve the ten-

ants’ QoS, we should consider the following two robustness

constraints when mapping tenants’ traffic with service nodes.

1) Tenant Constraint. Considering the bursty/anomaly traffic,

we do not expect that a single tenant’s bursty/anomaly traffic

affects too many service nodes. Thus, the number of service

nodes of each type that a tenant will map to should not exceed

k, where k is a constant determined by system requirements.

2) Service Node Constraint. We do not expect a single service

node failure affects too many tenants. So, a service node

is required to serve no more than q tenants, where q is a

constant determined by system requirements. Our objective is

to achieve load balancing among all service nodes, which can

improve service availability and execution efficiency [31].

C. Algorithm Workflow

Tenants may create/delete VMs dynamically and the traffic

volume from each VM at different times may vary greatly

[32]. In order to adapt to traffic uncertainty/dynamics, we

should update service mapping frequently. Service nodes

(e.g., IDS and Proxy) often need to record the state of pro-

cessed traffic [33]. However, frequent mapping updates will

increase extra delay and overhead to maintain the flow state

consistency on service nodes [33]. For example, after network

updates, if a tenant’s traffic is scheduled to a service node that

does not maintain the traffic’s state, it will lead to flow state

inconsistency. Some previous works [34] manage to migrate

the flow states from the original service nodes to the target

ones. However, the state migration will increase network

latency. For example, a loss-free move involving state for

500 flows takes 215ms [34], which is unacceptable for many

applications. The situation will become more serious if many

flows are migrated between service nodes.

To this end, similar to [35], we take a two-step approach:

service node assignment and tenant traffic scheduling. The

first step is performed at a long-term interval (e.g., one day),

and the second step is triggered by accidents, e.g., service

node congestion. Specifically, the first step will select a

feasible service node set for each tenant with the robustness

constraint in Section III. We only need to maintain flow state

consistency for the tenant’s traffic between these mapped

service nodes, decreasing the state maintenance overhead. For

tenant traffic scheduling, we will design a fully polynomial

3

time approximation scheme (FPTAS) for traffic scheduling

dynamically in Section IV.

Note that, in the cloud, the type of service required by

each request is fixed and each service node usually supports

only one specific service [36]. Thus, different types of service

nodes are independent when we map traffic to service nodes.

For ease of description, we only consider one type of service

node in this paper. If the traffic requires multiple services, we

only need to classify the traffic according to required service

types, and run our proposed algorithms for each service type.

III. SERVICE NODE ASSIGNMENT

This section first defines the problem of service node

assignment (SNA) and then analyzes its difficulty. Finally, an

approximation algorithm is proposed to solve this problem.

A. Problem Definition for SNA

To adapt to the traffic uncertainty/dynamics, we take a

two-step approach for RSMP. The first step solves the SNA

problem. Specifically, we select a feasible service node set

for each tenant so as to satisfy robustness constraints at a

long-term interval. Let bj represent the total traffic demand

of tenant tj . We use ypj ∈ {0, 1} to denote whether tenant

tj selects service node sp or not. Let xp
j denote the traffic

proportion of tenant tj served by service node sp. Besides,

we use Cp to denote the capacity of service node sp ∈ S.

The SNA problem can be formulated as follows:

min ζ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
sp∈S xp

j = 1, ∀tj ∈ T

xp
j ≤ yp

j , ∀tj ∈ T, sp ∈ S∑
sp∈S yp

j ≤ k, ∀tj ∈ T∑
tj∈T yp

j ≤ q, ∀sp ∈ S∑
tj∈T xp

j · bj ≤ ζ · Cp, ∀sp ∈ S

xp
j ∈ [0, 1] ∀tj ∈ T, sp ∈ S

yp
j ∈ {0, 1}, ∀tj ∈ T, sp ∈ S

(1)

The first set of equations means that all traffic of each

tenant will be processed by service nodes. The second set of

inequalities denotes whether some traffic of tenant tj will be

served by service node sp or not. ypj = 1 means service node

sp will process traffic of tenant tj . The third set of inequalities

denotes the tenant constraint, that is, each tenant’s traffic will

be processed by at most k service nodes. The fourth set of

inequalities represents the service node constraint, that is,

each service node can process traffic from at most q tenants.

The fifth set of inequalities describes the traffic load on each

service node, where ζ ∈ [0, 1] represents the load-balancing

factor. Our objective is to achieve load balancing on all

service nodes, i.e., min ζ.

B. Problem Complexity Analysis

By ignoring the tenant constraint (i.e., k = ms) and the

service node constraint (i.e., q = mt), the SNA problem be-

comes a typical parallel machines scheduling (PMS) problem

[37]. As a result, the SNA problem is NP-Hard too. In fact,

the problem remains challenging even relaxing any one of

the two constraints. The simplified problem includes special

cases like routing and distribution problems, which show the

complexity of our problem.

Definition 1 (K-Splittable Routing (KSR) problem [35]):
There is a network topology including a set of flows γ =
{r1, r2, ..., r|γ|} each associated with a traffic size f(ri). We

determine a set of potential paths Pi for each flow ri. We will

choose at most k paths in Pi for flow ri so as to minimize

the maximum load factor of all links.

According to [35], there exists a complex rounding-based

algorithm with the approximation factor of O(logN), where

N denotes the number of links in the topology.

Difference from the KSR problem: In this case, we

regard each tenant as a flow with traffic size bi, and choose at

most k paths/service nodes for each flow/tenant. If we ignore

the service node constraint, SNA becomes the KSR problem.

Definition 2 (Data Distribution (DD) Problem [38]): There

are a set of M servers and a set of N documents. Each

server is associated with a memory size mi. Each document

j is associated with a document size sj and an access cost

rj . We need to choose servers for each document with the

server’s memory size constraint. The objective is to minimize

the maximum access cost among all servers.

According to [38], there exists an algorithm which can

achieve the optimal solution, violating the access cost by at

most a factor 2(1 + 1
ψ) and the memory size by at most a

factor 2(1 + 1
ψ), where ψ denotes the maximum number of

documents saved by a server.

Difference from the DD problem: We regard each tenant

as a document with one unit document size and access

cost bi. A service node is actually a server which can only

accept q documents. If a tenant can map to unlimited service

nodes, i.e., ignoring the tenant constraint, we say that the DD

problem is a special case of our SNA problem.

The above analysis shows that the SNA problem is much

more difficult than both KSP and DD. Thus, designing an

algorithm with bounded approximation factors to solve the

SNA problem is far from trivial and in urgent need.

C. Algorithm Design for SNA

Similar to [39], we can adopt the random rounding method

to solve the SNA problem. The approximation factors for

this solution are (O(logms), O(logms), O(logms)), which

represent the maximum exceeded factors of tenant constraint,

service node constraint and load balancing factor constraint,

respectively. To improve the approximation performance, we

present an approximation algorithm, called Rounding-based

Service Node Assignment (RSNA), to solve this problem

with approximation factors of (1, O(logms), O(logms)),
that is, our algorithm can strictly satisfy the tenant constraint.

RSNA mainly consists of two steps. The first step relaxes Eq.

(1) by replacing the seventh line of integer constraints with

ypj ∈ [0, 1], turning the problem into linear programming. We

can solve it with a linear program solver (e.g., CPLEX [40])

and the solutions are denoted as {x̃p
j}, {ỹpj } and ζ̃.

In the second step, we determine how to assign service

nodes for each tenant, i.e., obtain feasible solutions {ŷpj }

4

and {x̂p
j}. For each tenant tj , we first define another integer

variable k(j) = �∑sp∈S ỹpj �. Then we put all variables ỹpj
(∀sp ∈ S) into k(j) knapsacks so as to minimize the sum of

all variables in each knapsack. For each knapsack a, assume

that it contains a set of variables, denoted as Va, and let

za =
∑

ỹp
j ∈Va

ỹpj . One variable ỹpj will be chosen (i.e., ŷpj =

1) with probability
ỹp
j

za
, and the traffic proportion of tenant tj

served by service node sp is x̂p
j =

x̃p
j ·za
ỹp
j

.

Note that, after we put variables into knapsacks with the

objective of min-max sum, za is usually approximately equal

to 1 and we will prove that za must be greater than 0.5.

According to the first and third constraints in Eq. (1), we

know that x̃p
j is generally much smaller than ỹpj . Thus we

believe x̂p
j ≤ 1. For each tenant tj , we select the set of

service nodes with ŷpj = 1 as the feasible service node set.

The RSNA algorithm is formally described in Algorithm 1.

Algorithm 1 Rounding-based Service Node Assignment

1: Step 1: Solving the Relaxed SNA Problem
2: Construct a linear program by replacing with ypj ∈ [0, 1]
3: Obtain the optimal solutions {x̃p

j} and {ỹpj }
4: Step 2: Service Node Assignment for Each Tenant
5: for each tenant tj ∈ T do
6: Let k(j) = �∑sp∈S ỹpj �
7: Put all variables ỹpj (∀sp ∈ S) into k(j) knapsacks

with min-max sum

8: for each knapsack a do
9: Let set Va denote the variables in knapsack a

10: za =
∑

ỹp
j ∈Va

ỹpj

11: Choose sp for ỹpj ∈ Va with probability
ỹp
j

za

12: Let x̂p
j =

x̃p
j ·za
ỹp
j

for the chosen service node sp

13: Select the service nodes with ŷpj = 1 for tenant tj

D. Performance Analysis

This section proves the correctness of our RSNA algorithm

and analyzes its approximate performance.

Theorem 1: The proposed RSNA algorithm guarantees that

each tenant tj ∈ T will choose at most k service nodes, i.e.,
we can strictly guarantee the tenant constraint.

Proof: For each tenant tj ∈ T , we put all service

nodes into k(j) knapsacks and select a service node in one

knapsack, thus we will choose k(j) service nodes in total. On

the other hand, according to the definition of variable k(j)
and the third constraints in Eq. (1) we have :

k(j) = �
∑

sp∈S
ỹpj � ≤

∑
sp∈S

ỹpj ≤ k (2)

Thus, we can strictly guarantee the tenant constraint.

Lemma 2: The lower bound of the sum za of all variables

in any knapsack a for each tenant tj is greater than 1
2 and

not greater than
k(j)

2k(j)−1 .

Proof: We first prove that the lower bound is greater

than 1
2 . For each tenant tj , according to the definition of

k(j), we have:∑
sp∈S

ỹpj = k(j) + ε, 0 < ε < 1 (3)

We define two sets:{
Y1 = {ỹp

j | 12 < ỹp
j < 1, sp ∈ S}

Y2 = {ỹp
j |0 < ỹp

j < 1
2
, sp ∈ S} (4)

We arbitrarily choose two numbers from set Y2 (e.g., y1p
and y2p) and compute their sum (e.g., yp = y1p + y2p). If the

result is less than 0.5, we put the new value into Y2 and

delete the chosen two numbers from Y2 (e.g., Y2 = Y2 −
{y1p, y1p}+ {y′p}). Otherwise, we put it into set Y1 and delete

the chosen two numbers from Y2. (e.g., Y1 = Y1 + {y′p},

Y2 = Y2 − {y1p, y1p}). We repeat the above operations until

there is at most one number in Y2. Now, we assume there are

less than k(j) numbers in Y1, i.e., there are at most k(j)− 1
numbers in Y1. Note that the numbers in Y1 are all less than

1. Then ∑
ỹp
j ∈Y1

ỹpj < k(j)− 1 (5)

The sum of the remaining numbers in Y2 is∑
ỹp
j ∈Y2

ỹpj <
1

2
(6)

Thus, we have ∑
sp∈S

ỹpj < k(j)− 1

2
(7)

However, it contradicts
∑

sp∈S ỹpj = k(j) + ε in Eq. (3).

Thus, there are at least k(j) numbers in Y1. In this case, we

can simply assign each ỹpj in Y1 to each knapsack. Then the

total value za in any knapsack a must be greater than 1
2 .

We next prove that the lower bound is not greater than
k(j)

2k(j)−1 . We assume that there are 2k(j) − 1 identical

numbers, each with a value of
k(j)

2k(j)−1 . When we assign

these numbers to k(j) knapsacks, it is obvious that there

exists a knapsack which only has one number with the value

of
k(j)

2k(j)−1 . Thus, there does not exist an assignment scheme

to make sure the sum of variables in any knapsack is greater

than
k(j)

2k(j)−1 .

Theorem 3: The proposed RSNA algorithm guarantees that

the number of tenants on any service node will not exceed

the service node constraint by a factor of O(logms), where

ms is the number of service nodes.

Proof: We first prove that for each tenant tj ∈ T and

service node sp ∈ S, we have E
[
ŷpj
] ≤ 2 · ỹpj . Specifically,

for any variable ỹpj in knapsack a, we round ỹpj to 1 with

probability
ỹp
j

za
. Thus, we have E

[
ŷpj
]
=

ỹp
j

za
. According to

Lemma 2, we have E
[
ŷpj
]
=

ỹp
j

za
≤ 2 · ỹpj . Then, we analyze

the approximation ratio performance based on the classical

randomized rounding method. Due to space limit, we omit the

proof. The reader can refer to [41] [42] for the performance

analysis of the randomized rounding method.

Theorem 4: The RSNA algorithm can achieve the approxi-

mation factor of O(logms) for load balancing factor in multi-

tenant clouds, where ms is the number of service nodes.

Proof: We first prove that for each tenant tj ∈ T and

service node sp ∈ S, we have E
[
x̂p
j

]
= x̃p

j . Specifically,

5

for any variable x̃p
j in knapsack a, we let x̂p

j =
x̃p
j ·za
ỹp
j

with

probability
ỹp
j

za
. Thus, we have E

[
x̂p
j

]
=

ỹp
j

za
· x̃p

j ·za
ỹp
j

= x̃p
j .

Similarly, we can analyze approximation ratio performance

based on the classical randomized rounding method. The

reader can refer to [41] [42] for the performance analysis

of the randomized rounding method.

IV. TENANT TRAFFIC SCHEDULING

In this section, we first define the problem of tenant

traffic scheduling (TFS). We then propose an approximation

algorithm, called binary search and combinatorial rounding

based traffic scheduling (BCTS). Finally, we analyze its

approximation performance and time complexity.

A. Problem Definition for TFS

By the RSNA algorithm as described in Section III, we use

Sj to denote the set of available service nodes for each tenant

tj . Let xp
j,n ∈ {0, 1} denote whether the traffic of tenant tj ∈

T on computing node n ∈ N maps to service node sp ∈ S
or not. We use bj,n to represent the total traffic demand of

tenant tj ∈ T on computing node n ∈ N . Accordingly, we

formulate the TFS problem as follows:

min λ

S.t.

⎧⎪⎨⎪⎩
∑

sp∈Sj
xp
j,n = 1, ∀tj ∈ T, n ∈ N∑

tj∈T,n∈N xp
j,nbj,n ≤ λ · Cp, ∀sp ∈ Sj

xp
j,n ∈ {0, 1}, ∀tj , n, sp

(8)

The first set of equations denotes that the traffic of a tenant

on one computing node will be assigned to one service node.

The second set of inequalities states the traffic load on service

node sp, where the λ is called as the load ratio. Our goal is

to achieve the load balancing among all service nodes, that

is, min λ.

B. Algorithm Design for TFS

The problem in Eq. (8) can be regarded as an unrelated par-

allel machine scheduling (UPMS) problem [43]. If we solve

this problem using classical algorithms [43], considering the

time complexity of these algorithms, it may not achieve

good results in dynamic clouds. Thus, this section leverages

the FPTAS method to design an efficient approximation

algorithm, called binary search and combinatorial rounding

based traffic scheduling (BCTS). BCTS is formally described

in Algorithm 2.

The algorithm consists of three main steps. The first step

of BCTS is to relax TFS into a linear program, in which xp
j,n

can be fractional. According to the above relaxation, the TFS

problem is transformed as follows:

min λ

S.t.

⎧⎪⎨⎪⎩
∑

sp∈Sj
xp
j,n = 1, ∀tj ∈ T, n ∈ N∑

tj∈T,n∈N xp
j,nbj,n ≤ λ · Cp, ∀sp ∈ Sj

xp
j,n ∈ [0, 1]

(9)

Then the second step is to derive a fractional solution

of Eq. (9) using binary search and fully polynomial time

approximation scheme (FPTAS). According to problem def-

inition in Eq. (8), we know the upper bound of λ is

Θh =

∑
tj∈T,n∈N bj,n

minsp∈S(Cp)
, that is, all traffic is processed on

the service node with the minimum capacity. Besides, the

lower bound of λ is Θl =
maxtj∈T,n∈N (bj,n)

maxsp∈S(Cp)
, that is, the

request with the maximum traffic demand is processed on

the service node with the maximum capacity. We next use

binary search to obtain the feasible solutions. Specifically, let

Θm = Θl+Θh

2 . We first remove some inefficient assignments

between requests and service nodes that
bj,n
Cp

> Θm, i.e., let

xp
j,n = 0 if

bj,n
Cp

> Θm. After removing those assignments,

if we find Eq. (9) is not solvable, we will search in the

upper range, i.e., let Θl = Θm. Otherwise, we will search

in the lower range, i.e., let Θh = Θm. Clearly, when Θm

approaches Θh, Eq. (9) becomes the ordinary LP, which

must be solvable. We repeat the binary search operation until

|Θh −Θl| ≤ ξ, where ξ represents the search accuracy.

For ease of description, let I denote the request set and

the traffic demand of request i ∈ I is denoted as bi. Let Φ
denote the set of all feasible assignments in the cloud and Φi

denote the set of feasible assignments of request i. We use

φi,p ∈ Φ to denote that request i is assigned to service node

sp and the traffic amount of φi,p is denoted as wi,p. The TFS

problem can be transformed as follows:

min η

S.t.

⎧⎪⎨⎪⎩
∑

φi,p∈Φ wi,p ≤ η · Cp, ∀sp ∈ S∑
φi,p∈Φi

wi,p ≥ bi, ∀i ∈ I

wi,p ≥ 0, ∀φi,p ∈ Φ

(10)

The first set of inequalities denotes the total traffic load on

a service node. The second set of inequalities means that all

traffic of each request will be processed. Then we give an

equivalent form of Eq. (10) as follows:

max η′

S.t.

⎧⎪⎨⎪⎩
∑

φi,p∈Φ wi,p ≤ Cp, ∀sp ∈ S∑
φi,p∈Φi

wi,p ≥ η′ · bi, ∀i ∈ I

wi,p ≥ 0, ∀φi,p ∈ Φ

(11)

Compared with Eq. (10), we find that the optimal solution

of Eq. (11) is the inverse of that of Eq. (10). Furthermore,

we give the dual problem of Eq. (11) as follows:

min
∑
sp∈S

Cplp

S.t.

⎧⎪⎨⎪⎩
lp ≥ ri, ∀φi,p ∈ Φi, i ∈ I∑

i∈I biri ≥ 1

lp ≥ 0, ∀sp ∈ S

(12)

Note that the dual variables lp and ri represent the service

node capacity constraints and request traffic demand con-

straints in Eq. (11), respectively. Assume that Li represents

the service node with the least lp mapped to request i. Then,

Eq. (12) can transform into Eq. (13).

6

Algorithm 2 BCTS: Binary Search and Combinatorial

Rounding based Traffic Scheduling

1: Step 1: Relaxing the TFS Problem
2: Construct a linear program in Eq. (9)

3: Step 2: Deriving a Fractional Solution using FPTAS
4: Initialize Θl,Θh

5: while |Θh −Θl| > ξ do
6: Θm = Θl+Θh

2
7: Compute Φi for each bi according to Θm

8: Transform Eq. (9) into Eq. (13)

9: Apply the FPTAS method to solve Eq. (13) and get

the fractional solution λF

10: if The solution λF does not exist or λF > Θm then
11: Θl = Θm

12: else
13: Θh = Θm

14: Step 3: Generating an Integral Solution
15: Construct a bipartite graph

16: Use the Hungarian algorithm to find a matching A

covering all requests

17: Return the final assignment based on the matching A

min
∑
sp∈S

Cplp

S.t.

{∑
i∈I biLi ≥ 1

lp ≥ 0, ∀sp ∈ S
(13)

Similar to the work [44], we can apply FPTAS with low

time complexity to obtain a fractional solution for Eq. (13).

After we derive the fractional solution λF , the last step is

to construct a feasible integer solution using combinatorial

rounding. Based on the fractional solution, we first construct

a bipartite graph, which consists of two sets of vertices: a set

of request vertices and a set of service node vertices. For each

0 < xp
j,n < 1, there is an edge between the request vertex

bj,n and the service node vertex sp. For this bipartite graph,

we use the Hungarian algorithm [45] to find a matching A

that covers all requests, and the matching A can acquire λB

and the final assignment scheme by assigning each request

to the corresponding service node.

C. Performance Analysis

Lemma 5: The fractional solution λF by FPTAS is no more

than (1 + ε) · λlp, where ε is a value between [0, 1], and λlp

denotes the optimal fractional solution of Eq. (9).

Lemma 6: The solution λB by combinatorial rounding

process is no more than λF + λip, where λip denotes the

optimal integer solution of Eq. (8).

Due to space limit, we omit the proofs of lemmas 5 and

6. The readers can refer to the analysis of FPTAS [46] and

combinatorial rounding method [43] for the detailed proofs.

Theorem 7: The approximate factor of BCTS is 2 + ε.
Proof: According to the above two lemmas, first, the

solution λF by FPTAS is no more than (1+ ε) ·λlp. Second,

using the combinatorial rounding process, we can get a

solution λB with no more than λF +λip, where λip denotes

the optimal integer solution of Eq. (8). Then we have
λB ≤ λF + λip ≤ (1 + ε) · λlp + λip

≤ (1 + ε) · λip + λip = (2 + ε) · λip

(14)

The third inequality holds because the optimal fractional

solution should not exceed the optimal integer solution.

Based on the above analysis, we can conclude that the BCTS

algorithm guarantees the approximation factor of 2 + ε.
Theorem 8: The time complexity of BCTS is

O(M
2

ε2 log Θ
ξ logO(1)

M + |V| · |E|), where M is the

number of feasible schemes and Θ equals

∑
tj∈T,n∈N bj,n

minsp∈S(Cp)
.

Let V and E represent the set of vertices and edges,

respectively, in the bipartite graph.

Proof: The time complexity of BCTS mainly consists

of three parts: binary search, FPTAS and combinatorial

rounding. The running time of binary search, FPTAS, and

combinatorial rounding is O(Θξ) [47], O(M
2

ε2 logO(1)
M) [44]

and O(|V| · |E|) [45], respectively. Thus, the total running

time of BCTS is O(M
2

ε2 log Θ
ξ logO(1)

M + |V| · |E|), which

is much lower than the running time by using the standard

linear program solvers such as CPLEX [40].

V. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

Performance Metrics: We adopt the following perfor-

mance metrics in evaluation: (1) the maximum number of

affected service nodes (MNAS); (2) the maximum number of

affected tenants (MNAT); (3) the system throughput; (4) the

load balancing factor. During a simulation run, we measure

the number of service nodes that each tenant maps to and

record the largest value as MNAS. Similarly, we measure the

number of tenants served by each service node and record

the largest value as MNAT. We calculate the total load of

all the service nodes as the system throughput. Moreover,

we measure the load of each service node and record the

maximum load of all service nodes. For each service node,

we divide the load of this service node by its processing

capacity to get the load factor. The load balancing factor

is the maximum load factor among all service nodes. For

simplicity, we use SN to denote service nodes.

Benchmarks: This paper divides RSMP into two sub-

problems: SNA and TFS. Accordingly, we propose the RSNA

algorithm and the BSTC algorithm for SNA and TFS, re-

spectively. The combined algorithm for RSMP is denoted

as RS+BS for simplicity. We compare RS+BS with three

benchmarks. The first benchmark is the Shortest Job First

(SJF) algorithm [48], which is widely adopted in clouds. SJF

always chooses the service node with the least burden for the

request with the least traffic demand. The second benchmark

is the Weighted Round Robin in Honeybee (WRR-H) algo-

rithm [49]. WRR-H uses the Honeybee Inspired algorithm

by assigning weights to each service node, and the request is

scheduled to the service node according to the traffic demand.

The third benchmark is the Heterogeneous Task Assignment

algorithm (HTA2) [50]. HTA2 first sorts all the tenants by

their traffic demand in the descending order. Then for each

7

 4

 8

 12

 16

1 2 3 4 5 6 7 8 9 10

M
N

A
S

No. of Flows(×10
3
)

WRR-H
HTA2

SJF
RS+BS

(a) the small topology

 40

 80

 120

 160

 200

1 2 3 4 5 6 7 8 9 10

M
N

A
S

No. of Flows(×10
5
)

WRR-H
HTA2

SJF
RS+BS

(b) the large topology

Fig. 1: MNAS vs. Number of Flows without Robustness Constraints

 60

 120

 180

 240

 300

1 2 3 4 5 6 7 8 9 10

M
N

A
T

No. of Flows (×10
3
)

WRR-H
HTA2

SJF
RS+BS

(a) the small topology

 80

 160

 240

 320

1 2 3 4 5 6 7 8 9 10

M
N

A
T

No. of Flows(×10
5
)

WRR-H
HTA2

SJF
RS+BS

(b) the large topology

Fig. 2: MNAT vs. Number of Flows without Robustness Constraints

tenant, it assigns the request with minimum traffic demand

to the service node with the least burden.

The simulations are performed under two scenarios. The

first scenario does not consider robustness constraints for

the three benchmarks. This scenario mainly tests MNAS

if a tenant sends malicious traffic, and MNAT if a service

node encounters a failure. The second scenario considers

robustness constraints. In order to guarantee the system

robustness, we limit the number of service nodes that each

tenant can map to and the number of tenants that each service

node can serve for these benchmarks. This scenario mainly

tests the system throughput for different algorithms.

B. Simulation Evaluation

1) Simulation Settings: We conduct simulation experi-

ments to compare RS+BS with three benchmarks in two

practical topologies. The first one is a small-scale NSF

network topology, which contains 16 service nodes [28].

Since the topology does not provide computing nodes and

tenant information, we leverage the ratio of switches and

computing nodes (1:30) demonstrated in the Google cluster-

data [29] to set the number of computing nodes as 480.

Moreover, the number of tenants is set to be the same as the

computing nodes. We mainly consider the individual tenants

in this topology and let each tenant create 1-20 VMs. The

second topology is from Google cluster-data [29], which

contains 10047 computing nodes and 324 service nodes.

The number of tenants is set to 1000. Moreover, we mainly

consider the enterprise tenants in this large-scale topology

and let each tenant create 1-200 VMs. We generate tenants’

traffic (flows) according to the Google cluster-data [29] and

randomly select a VM for each flow. Besides, we generate

6×103 flows for the small topology and generate 6×105

0

80

160

240

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

No. of Flows (×10
3
)

RS+BS
HTA2

SJF
WRR-H

(a) the small topology

0

8

16

24

32

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(T

b
p

s)

No. of Flows (×10
5
)

RS+BS
HTA2

SJF
WRR-H

(b) the large topology

Fig. 3: System Throughput vs. Number of Flows without Robustness
Constraints

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10L
o
a
d
 B

a
la

n
c
in

g
 F

a
c
to

r

No. of Flows (×10
3
)

WRR-H
SJF

HTA2
RS+BS

(a) the small topology

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10L
o
a
d
 B

a
la

n
c
in

g
 F

a
c
to

r

No. of Flows (×10
5
)

WRR-H
SJF

HTA2
RS+BS

(b) the large topology

Fig. 4: Load Balancing Factor vs. Number of Flows without
Robustness Constraints

0.2

0.4

0.6

0.8

1.0

 0.8 0.85 0.9 0.95 1

C
D

F

Load Balancing Factor

WRR-H
SJF

HTA2
RS+BS

(a) the small topology

0.2

0.4

0.6

0.8

1.0

 0.8 0.85 0.9 0.95 1
C

D
F

Load Balancing Factor

WRR-H
SJF

HTA2
RS+BS

(b) the large topology

Fig. 5: CDF vs. Load Balancing Factor without Robustness Con-
straints

flows for the large topology by default. k is set 4/40 and

q is set 60/100 for the small/large topology by default.

2) Performance Comparison without Robustness Con-
straints: The results are shown in Figs. 1-5. Fig. 1 shows

that as the number of flows increases, our proposed algorithm

always acquires the least MNAS compared with other algo-

rithms. For example, when there are 6×103 flows in the small

topology, the MNAS results of four algorithms are 11, 16,

12.5 and 4 corresponding to SJF, WRR-H, HTA2 and RS+BS.

RS+BS reduces MNAS by 63.6%, 75% and 68% compared

with SJF, WRR-H and HTA2, respectively. In comparison,

MNAS increases significantly by both SJF and HTA2 since

these two algorithms do not limit the number of service nodes

a tenant can map to. Besides, WRR-H always acquires the

worst result since it adopts the scheme by assigning each

request to service nodes in turn. As shown in Fig. 2, we can

see that as the number of flows increases, RS+BS always

acquires the least MNAT compared with other benchmarks.

For example, in Fig. 2(b), when there are 5 × 105 flows,

RS+BS can reduce MNAT by 62.7%, 68.8% and 66.8%
compared with SJF, WRR-H and HTA2, respectively.

Figs. 3-5 show the throughput and load-balancing per-

formance among all algorithms. Specifically, Fig. 3 shows

8

0

80

160

240

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

No. of Flows (×10
3
)

RS+BS

WRR-H

SJF

HTA2

(a) the small topology

 0

8

16

24

32

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(T

b
p

s)

No. of Flows (×10
5
)

RS+BS

WRR-H

SJF

HTA2

(b) the large topology

Fig. 6: System Throughput vs. Number of Flows with Robustness
Constraints

that, with the increasing of flows, the system throughput of

all algorithms increases in both small and large topologies.

RS+BS achieves similar performance compared with the

other three benchmarks. Fig. 4 shows that the four algorithms

can achieve a similar load balancing factor. We should

note that RS+BS achieves similar throughput performance

compared with other benchmarks while taking robustness

constraints into consideration as shown in Figs. 1-2. Fig. 5

shows the CDF of load balancing factor of these algorithms

and RS+BS has the steepest function curve. For instance, in

Fig. 5(a), the ratio of service nodes with load balancing factor

below 90% is 87.5%, 75%, 93.7% and 100% corresponding

to SJF, WRR-H, HTA2 and RS+BS, respectively.

From Figs. 1-5, we can draw a conclusion that with-

out robustness constraints, the three benchmarks will affect

more service nodes when a tenant sends malicious traffic

to mapped service nodes and will affect more tenants when

a service node failure takes place. It may cause network

unreliability when dealing with service node failure and

tenants’ abnormal traffic. Meanwhile, RS+BS can almost

achieve the same load-balancing performance compared with

other benchmarks.
3) Performance Comparison with Robustness Con-

straints: By default, we set k = 4, q = 60 in the small

topology and set k = 40, q = 100 in the large topology.

When we assign a request to a service node and find this

will violate the robustness constraints, this service node will

refuse to serve this request. As shown in Fig. 6(a), when there

are 10 × 103 flows in the small topology, RS+BS improves

the throughput by 314%, 188% and 252% compared with

HTA2, WRR-H and SJF, respectively.

By Fig. 6(b), when there are 10 × 105 flows in the large

topology, RS+BS improves the throughput by 169%, 69.8%,

176% compared with SJF, WRR-H and HTA2, respectively.

As shown in Figs. 7-8, when k and q increase, the

throughput of the other three benchmarks all grows slowly

while that of RS+BS grows fast. For example, in Fig. 7(a),

when k = 8, RS+BS improves the throughput by 370%,

216% and 281% compared with SJF, WRR-H and HTA2,

respectively. In Fig. 8(b), when q = 150, RS+BS improves

the throughput by 92.0%, 88.6% and 143% compared with

SJF, WRR-H and HTA2, respectively. The reason is that

other three benchmarks will abandon much traffic to satisfy

robustness constraints while RS+BS can assign as much

traffic as possible to service nodes.

0

80

160

240

 2 4 6 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

k

RS+BS

WRR-H

SJF

HTA2

(a) the small topology

 0

8

16

24

32

 20 40 60 80

T
h

ro
u

g
h

p
u

t
(T

b
p

s)

k

RS+BS

WRR-H

SJF

HTA2

(b) the large topology

Fig. 7: System Throughput vs. k with Robustness Constraints

0

80

160

240

 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
q

RS+BS

WRR-H

SJF

HTA2

(a) the small topology

 0

8

16

24

32

 50 100 150 200

T
h

ro
u

g
h

p
u

t
(T

b
p

s)

q

RS+BS

WRR-H

SJF

HTA2

(b) the large topology

Fig. 8: System Throughput vs. q with Robustness Constraints

From these simulation results, we can draw some con-

clusions. First, from Figs. 1-2, RS+BS can significantly

reduce the maximum number of affected service nodes by

63.6%, 75%, 68% on average compared with SJF, WRR-

H, and HTA2, respectively, in the large topology. In the

small topology, RS+BS can reduce the maximum number

of affected service nodes by 74.2%, 80%, 75.2% and reduce

the maximum number of affected tenants by 63.3%, 68.8%,

66.1% compared with SJF, WRR-H, HTA2, respectively.

Second, Figs. 3-5 show that RS+BS can achieve similar

throughput of all service nodes and load balancing result

while the other three algorithms do not consider the ro-

bustness constraints. Finally, as shown in Figs. 6-8, RS+BS

improves the system throughput by about 314%, 188% and

252% on average in the small topology and 169%, 69.8%
and 176% in the large topology compared with SJF, WRR-H

and HTA2, respectively.

C. Testbed Evaluation

This section presents our system implementation to eval-

uate these algorithms in a small-scale testbed.

1) System Implementation: In general, we use 10 servers

to build a small-scale testbed. Specifically, we first run

SNAT (Static Network Address Translation) service on 5

physical servers all with Ubuntu 16.04-server OS, a core i5-

7500 processor and 8G of RAM. Then we adopt 5 physical

servers all with a core i5-6500 processor and 8G of RAM as

computing nodes which contain tenants’ VMs. We assume

there are 20 tenants and each tenant has 1-5 VMs. In the

testbed, we set k = 2, q = 10 and 60 flows by default.

We implement our tests with a set of flows from Google

cluster-data [29] and the number of generated flows ranges

from 20 to 100. We use iPerf3 tool [51] to generate tenants’

traffic and send it to the corresponding service nodes. More-

9

 4

 8

 12

 16

1 2 3 4 5 Avg. Max.

N
o
.
o
f

T
e
n
a
n
ts

SN

SJF

WRR-H

HTA2

RS+BS

Fig. 9: No. of Tenants of each SN
without Robustness Constraints

 0

 2

 4

 6

20 40 60 80 100

M
N

A
S

No. of flows

SJF

WRR-H

HTA2

RS+BS

Fig. 10: MNAS vs. No. of Flows
without Robustness Constraints

0.3

0.4

0.5

0.6

1 2 3 4 5 Avg. Max.

S
N

 L
o
a
d
 (

G
b
p
s)

SN

SJF

WRR-H

HTA2

RS+BS

Fig. 11: Load of each SN without
Robustness Constraints

 0

0.25

0.50

0.75

1

20 40 60 80 100

M
a
x
.
S

N
 l

o
a
d
 (

G
b
p
s)

No. of flows

SJF

WRR-H

HTA2

RS+BS

Fig. 12: Maximum SN Load of
SNs vs. No. of Flows without
Robustness Constraints

over, we use vnStat tool [52] to monitor and collect the traffic

information in service nodes.

2) Performance Comparison without Robustness Con-
straints: The results are shown in Figs. 9-12. We first

generate 60 flows in total scattered among 20 tenants and

send these flows to service nodes based on the results of

different algorithms. We record the number of tenants that

each service node serves and the results are shown in Fig.

9. We can see that RS+BS reduces the average number of

tenants that a service node serves by 34%, 45% and 31.3%
compared with SJF, WRR-H and HTA2, respectively. Fig. 10

shows that MNAS grows when the number of flows increases

for all benchmarks. In contrast, our proposed algorithm only

affects a limited range of service nodes. For example, RS+BS

reduces MNAS by about 50%, 60% and 50% compared with

SJF, WRR-H and HTA2, respectively, given 80 flows in the

system. Although RS+BS takes the robustness constraints

into consideration, Figs. 10-12 show that RS+BS can acquire

similar service node load compared with the other three

benchmarks.

From these results, we can see that our proposed algorithm

can reduce the number of affected tenants when encoun-

tering service node failure and can reduce the number of

affected service nodes when a tenant sends malicious traffic

to mapped service nodes. Meanwhile, RS+BS can achieve

similar load performance compared with other algorithms

while achieving better network robustness.

3) Performance Comparison with Robustness Con-
straints: The results are shown in Figs. 13-16. The service

node will refuse to serve those flows that violate the robust-

ness constraints. As shown in Figs. 13-14, the throughput

increases with the increasing k and q for all algorithms. When

k and q are relatively small, the number of abandoned flows is

significant for benchmarks and RS+BS can serve more traffic

than other algorithms. For example, when q = 6 in Fig. 13,

our proposed algorithm can improve the throughput by about

124.4%, 60.7% and 100.2% compared with SJF, WRR-H and

0

1

2

3

2 6 10 14

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

q

SJF

WRR-H

HTA2

RS+BS

Fig. 13: Throughput vs. q with
Robustness Constraints

0

1

2

3

1 2 3 4

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

k

SJF

WRR-H

HTA2

RS+BS

Fig. 14: Throughput vs. k with
Robustness Constraints

 0

1

2

3

4

20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

No. of flows

SJF

WRR-H

HTA2

RS+BS

Fig. 15: Throughput vs. No.
of Flows with Robustness Con-
straints

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 Avg. Max.

S
N

 l
o
a
d
 (

G
b
p
s)

SN

SJF

WRR-H

HTA2

RS+BS

Fig. 16: Load of each SN with
Robustness Constraints

HTA2, respectively. Fig. 15 shows the throughput increases

with the number of flows for all algorithms, and RS+BS

can achieve the maximum total load compared with other

algorithms. For example, when the number of flows is 80,

RS+BS improves the throughput by about 55.2%, 88.1% and

85.6% compared with SJF, WRR-H and HTA2, respectively.

Fig. 13 shows the load of each service node when the number

of flows is 60. It is obvious that RS+BS has the best average

and maximum service node load performance.

From the above system evaluation results, we can draw

some conclusions. First, Figs. 9-10 show that RS+BS can

significantly reduce the number of affected tenants and the

number of affected service nodes by about 40% and 55% on

average, respectively, compared with the other three bench-

marks. Second, RS+BS can obtain a similar service node load

performance compared with the other three algorithms while

our proposed algorithm considers robustness constraints as

shown in Figs. 11-12. Finally, Figs. 13-16 indicate that

RS+BS can always acquire the highest load among all service

nodes if all algorithms consider the robustness constraints.

VI. CONCLUSION

In this paper, we focus on the problem of robust service

mapping in multi-tenant clouds. To efficiently solve this

complex problem, we take a two-step approach: service node

assignment and tenant traffic scheduling. Several algorithms

with bounded approximation factors have been designed to

solve the service node assignment problem and the tenant

traffic scheduling problem. Extensive simulation results show

the high efficiency of our proposed algorithms.

ACKNOWLEDGEMENT

The corresponding authors of this paper are Gongming

Zhao and Hongli Xu. This article was supported in part by the

National Science Foundation of China (NSFC) under Grants

61822210, 61936015, and U1709217; and in part by Anhui

Initiative in Quantum Information Technologies under Grant

AHY150300; and in part by a research funding from Huawei.

10

REFERENCES

[1] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Lee-
laratne, S. Weerawarana, and P. Fremantle, “Multi-tenant soa middle-
ware for cloud computing,” pp. 458–465, 2010.

[2] G. Peng, H. Wang, J. Dong, and H. Zhang, “Knowledge-based resource
allocation for collaborative simulation development in a multi-tenant
cloud computing environment,” IEEE Transactions on Services Com-
puting, vol. 11, no. 2, pp. 306–317, 2016.

[3] “The amazon web service,” https://aws.amazon.com/.
[4] “The google cloud platform,” https://cloud.google.com/.
[5] H. Deng, L. Huang, H. Xu, X. Liu, P. Wang, and X. Fang, “Revenue

maximization for dynamic expansion of geo-distributed cloud data
centers,” IEEE Transactions on Cloud Computing, 2018.

[6] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and
fairness for multi-tenant cloud storage,” pp. 349–362, 2012.

[7] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu,
“Multi-tenancy in cloud computing,” in 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, pp. 344–351.

[8] M. Rahman, S. Iqbal, and J. Gao, “Load balancer as a service in cloud
computing,” in 2014 IEEE 8th International Symposium on Service
Oriented System Engineering. IEEE, 2014, pp. 204–211.

[9] M. T. Arashloo, P. Shirshov, R. Gandhi, G. Lu, L. Yuan, and J. Rex-
ford, “A scalable vpn gateway for multi-tenant cloud services,” ACM
SIGCOMM Computer Communication Review, vol. 48, no. 1, pp. 49–
55, 2018.

[10] M. Liu, W. Dou, S. Yu, and Z. Zhang, “A clusterized firewall frame-
work for cloud computing,” in 2014 IEEE International Conference
on Communications (ICC). IEEE, 2014, pp. 3788–3793.

[11] K. Yang and X. Jia, “Data storage auditing service in cloud computing:
challenges, methods and opportunities,” World Wide Web, vol. 15,
no. 4, pp. 409–428, 2012.

[12] J. Li, W. Shi, P. Yang, and X. Shen, “On dynamic mapping and
scheduling of service function chains in sdn/nfv-enabled networks,”
in 2019 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1–6.

[13] M. Jalalitabar, G. Luo, C. Kong, and X. Cao, “Service function graph
design and mapping for nfv with priority dependence,” in 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–5.

[14] L. Qu, C. Assi, and K. B. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,” IEEE
Transactions on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[15] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint optimiza-
tion of service function chaining and resource allocation in network
function virtualization,” IEEE Access, vol. 4, pp. 8084–8094, 2016.

[16] S. Abrishami, M. Naghibzadeh, and D. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169,
2013.

[17] A. Verma and S. Kaushal, “Deadline constraint heuristic-based genetic
algorithm for workflow scheduling in cloud,” International Journal of
Grid and Utility Computing, vol. 5, no. 2, pp. 96–106, 2014.

[18] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” vol. 41, no. 4,
pp. 350–361, 2011.

[19] A. Engelmann and A. Jukan, “A reliability study of parallelized vnf
chaining,” in 2018 IEEE International Conference on Communications
(ICC). IEEE, 2018, pp. 1–6.

[20] C. Delimitrou and C. Kozyrakis, “Bolt: I know what you did last
summer... in the cloud,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 599–613, 2017.

[21] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding cloud
computing vulnerabilities,” IEEE Security & privacy, vol. 9, no. 2, pp.
50–57, 2010.

[22] A. Ledjiar, E. Sampin, C. Talhi, and M. Cheriet, “Network function
virtualization as a service for multi-tenant software defined networks,”
in 2017 Fourth International Conference on Software Defined Systems
(SDS). IEEE, 2017, pp. 168–173.

[23] A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim, “Seawall:
Performance isolation for cloud datacenter networks.”

[24] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Dynamic
traffic steering of multi-tenant virtualized network functions in sdn
enabled data centers,” in 2016 IEEE 21st International Workshop on
Computer Aided Modelling and Design of Communication Links and
Networks, pp. 65–70.

[25] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Observing and
mitigating micro-burst traffic in data center networks,” IEEE/ACM
Transactions on Networking, vol. 28, no. 1, pp. 98–111, 2019.

[26] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[27] L. Mai, C. Hong, and P. Costa, “Optimizing network performance in
distributed machine learning,” in 7th {USENIX} HotCloud, 2015.

[28] G. Sun, Z. Chen, H. Yu, X. Du, and M. Guizani, “Online parallelized
service function chain orchestration in data center network,” IEEE
Access, vol. PP, no. 99, pp. 1–1, 2019.

[29] “Google cluster-data,” https://github.com/google/cluster-data.
[30] Y. Ren, G. Liu, V. Nitu, W. Shao, R. Kennedy, G. Parmer, T. Wood, and

A. Tchana, “Fine-grained isolation for scalable, dynamic, multi-tenant
edge clouds,” in 2020 {USENIX}{ATC}, 2020, pp. 927–942.

[31] Y. Zhou, L. Ruan, L. Xiao, and R. Liu, “A method for load balancing
based on software defined network,” Advanced Science and Technology
Letters, vol. 45, pp. 43–48, 2014.

[32] Z. Liu, K. Chen, H. Wu, S. Hu, Y.-C. Hut, Y. Wang, and G. Zhang,
“Enabling work-conserving bandwidth guarantees for multi-tenant
datacenters via dynamic tenant-queue binding,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pp. 1–9.

[33] W. J. A. Silva, “Avoiding inconsistency in openflow stateful applica-
tions caused by multiple flow requests,” in 2018 ICNC, pp. 548–553.

[34] A. Gemberjacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: enabling innovation in network
function control,” vol. 44, no. 4, pp. 163–174, 2015.

[35] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing for a
hybrid sdn,” IEEE/ACM Transactions on Networking, vol. 25, no. 3,
pp. 1861–1875, 2017.

[36] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM) and Workshop. IEEE,
2014, pp. 418–423.

[37] E. Sanlaville and G. Schmidt, “Machine scheduling with availability
constraints,” Acta Informatica, vol. 35, no. 9, pp. 795–811, 1998.

[38] L.-C. Chen and H.-A. Choi, “Approximation algorithms for data
distribution with load balancing of web servers.” in cluster, vol. 1,
2001, p. 274.

[39] H. Xu, H. Huang, S. Chen, G. Zhao, and L. Huang, “Achieving high
scalability through hybrid switching in software-defined networking,”
IEEE/ACM Transactions on Networking, vol. PP, no. 1, pp. 1–15, 2018.

[40] IBM, “V12. 1: User manual for cplex,” International Business Ma-
chines Corporation, vol. 46, 01 2009.

[41] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on sdn network utilization,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 1734–1742.

[42] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for sdns,” in Network Protocols (ICNP), 2016 IEEE 24th International
Conference on. IEEE, 2016, pp. 1–10.

[43] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” in IEEE FOCS, Oct 1987,
pp. 217–224.

[44] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in 2013 Proceedings IEEE INFOCOM.
IEEE, 2013, pp. 2211–2219.

[45] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[46] Karakostas and George, “Faster approximation schemes for fractional
multicommodity flow problems,” Acm Transactions on Algorithms,
vol. 4, no. 1, pp. 1–17, 2008.

[47] J. Nievergelt and E. M. Reingold, “Binary search trees of bounded
balance,” SIAM journal on Computing, vol. 2, no. 1, pp. 33–43, 1973.

[48] R. Somula and S. Nalluri, “Analysis of cpu scheduling algorithms for
cloud computing,” 2019.

[49] N. K. C. Das, M. S. George, and P. Jaya, “Incorporating weighted
round robin in honeybee algorithm for enhanced load balancing in
cloud environment,” 2017.

[50] Keke, Gai, Meikang, Qiu, Hui, and Zhao, “Energy-aware task assign-
ment for mobile cyber-enabled applications in heterogeneous cloud
computing,” Journal of Parallel and Distributed Computing, 2018.

[51] “iperf,” https://iperf.fr/.
[52] “vnstat,” https://humdi.net/vnstat/.

